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Word Embeddings and Analogies

Popular static word embedding models are based on the distributional hypothesis:
words that occur in the same contexts tend to have similar meanings [1]
Example: word2vec

… the quick brown fox jumped over the …
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Two matrices are trained to recover co-occurrence statistics with inner products.
Context vectors are used as word embeddings, target vectors are discarded.
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Word Embeddings and Analogies

Pheonomenon: For all models, analogies are implicitly learned as some structure
in the embedding space

Previous consensus: Parallelograms [2, 3]
Recent works: Parallel lines [4, 5, 6]
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Word Embeddings and Analogies

Question: How does this happen? What is the core mechanism?
Answer: Unclear, and existing theoretical works are scarce [7]

Our work studies the underlying machinery for recovering
analogies as parallel lines.
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Contrastive Word Model

Idea: Pull word vectors that co-occur close together while pushing others away,
and keep one vector for each word

… the quick brown fox jumped over the …

window words window words

center word

Training Corpus fox

brown

jumped

man

Objective:

LCWM(V ) =
∑
c∈W

∑
w∈W

#(c,w) ·
∑

w′∈Dc,w

[
m − v̂c · v̂w︸ ︷︷ ︸

pull

+ v̂c · v̂w′︸ ︷︷ ︸
push

]
+

Explanation:
Difference between v̂c · v̂w and v̂c · v̂w′ encourages the angle between vc and vw to
be smaller than between vc and vw′ by at least a margin of m.
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Popular Word Embeddings and Push-Pull

Existing methods can be reformulated as push-pull.
word2vec: Vectors for co-occurring words are pulled towards each other, while
being pushed away from the mean of all other word vectors:

vnew
c = vold

c +
(

1 − ev⊺
w uc′∑

w′∈W ev⊺
w uw′

)
vw︸ ︷︷ ︸

pull

−Ew′∼W [vw′ ]︸ ︷︷ ︸
push

+additional terms

GloVe: Vectors for co-occurring words are pulled towards a common vector, while
other words are pushed away from the same vector:

pull
{

vnew
c = vold

c + g(c, c′)uc′

vnew
w = vold

w + g(w , c′)uc′

push
{

vnew
w′ = vold

w′ − g(w ′, c′)uc′ ,
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Mathematical Analysis
Optimal Embeddings that Minimize CWM’s Objective

Claim
The word vectors vc ∈ V that minimize the global objective is:

vc = ρc

(∑
w∈W

(#(c,w)

#(c)
v̂w

)
− E

w′∼U(W )

[
v̂w′

])
, (1)

where ρc ∝ #(c).
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Relation between Co-occurrence and Analogies
Connecting Co-occurrence Statistics and Analogy Formation

Theorem

If the word vectors satisfy Eq. (1), for any quadruple of words a, b, c, d ∈ W , if the
co-occurrence statistics satisfy the condition:

∃ζ ∈ R,∀w ∈ W :

(
#(a,w)

#(a)
− #(b,w)

#(b)

)/(
#(c,w)

#(c)
− #(d ,w)

#(d)

)
:= ζ, (2)

then the corresponding word vectors satisfy the property:

v̂a − v̂b = ζ
(

v̂c − v̂d

)
.

Interpretation:
If word co-occurrence statistics follow Theorem 2, then the quadruple will form
parallel lines.

Significance:
Given a corpus, one can predict which words will form parallel lines a priori to
training!
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Relation between Co-occurrence and Analogies
Value of ζ and Geometry

In Eq. (2), a ζw can be calculated for each word w ∈ W for fixed a, b, c, d :

(
#(a,w)

#(a)
− #(b,w)

#(b)

)/(
#(c,w)

#(c)
− #(d ,w)

#(d)

)
:= ζw

⇒ v̂a,w − v̂b,w = ζw

(
v̂c,w − v̂d,w

)
Remark 1: The concentration of the the distribution of ζw describes how parallel
the quadruples’ lines will be:

Distribution of 𝛇
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c d
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Relation between Co-occurrence and Analogies
Value of ζ and Geometry

There exists analogies that are vague/ambiguous.
Examples:

sun : red = sea : blue
sun : yellow = sea : blue
sun : orange = sea : blue
. . .

run : running = walk : walking
flee : fled = grow : grew
Paris : France = Tokyo : Japan
. . .

For left pairs, formation of parallelograms/trapezoids for all quadruples is difficult.
Empirically, we want to observe low concentration of ζw values for ambiguous
analogies, and high concentration for clear analogies.

Edward Ri (Columbia University) Contrastive Learning and Analogies 10 / 16



Relation between Co-occurrence and Analogies
Value of ζ and Geometry

Remark 2: The value of ζ determines the geometric shape of the quadruple:

𝛇=1𝛇=3 𝛇=0.3
a b

c d

a b

c d

a b

c d

v̂a − v̂b = ζ
(

v̂c − v̂d

)
When ζ = 1: Parallelogram
When ζ ̸= 1: Trapezoid

Empirically, for analogy pairs, we want to observe better parallelogram recovery
for ζ = 1, and better trapezoid recovery when ζw is concentrated.
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Results

Metrics [8]:
P: True Analogy Pairs
N: Imposter Analogy Pairs
PCS (Pairing Consistency Score):

Measures relative offset alignment
MSM (Mean Similarity Measure):

Measures absolute offset alignment
There are degenerate configurations which
perform well on one but not both.

man woman

king

queen

boy girl

PCS

MSM

Performance on BATS Dataset:
Analogies Training

Model PCS MSM Time (hrs) Speedup
CWM 0.677 0.469 0.59 49×
SGNS 0.675 0.433 29.27 1×
GloVe 0.667 0.423 30.71 0.91×

CWM performs competitively while achieving dramatic train time speedup
(49 times faster than word2vec!)
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Existence and Effect of ζ and Analogies

Remark 1 Verification:
We extract analogy pairs where ζw is concentrated and not concentrated.

Samples where ζ is highly concentrated:
improve : improves = create: creates
enable : enables = allow : allows
provide : provides = create : creates
prevent : prevents = protect : protects
prevent: preventing = avoid : avoiding
avoid : avoiding = ensure : ensuring

Samples where ζ is poorly concentrated:
mouse : rodent = beetle : insect
beetle : insect = squirrel : rodent
beetle : insect = beaver : rodent
wall : cement = clothing : fabric
jewelry : bracelet = poem : haiku
porcupine : rodent = beetle : insect

Result:
Analogies where relationship is precise exhibit high concentration, while bad
quality analogies (vague relationship, impossible pairs) exhibit poor concentration
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Existence and Effect of ζ and Analogies

Remark 2 Verification:
Extract all quadruples where ζ exists, and separate into when ζ ≈ 1 and when
ζ ̸≈ 1. Take kNN of calculated answer and check whether correct answer is among
k nearest neighbors.
Compare parallelogram recovery between all analogies and selected analogies:

Structure Subset k = 1 k = 5
Parallel Lines ζ ̸≈ 1 0.80 (619/774) 0.86 (667/774)

Parallelograms ζ ≈ 1 0.65 (137/210) 0.87 (183/210)
All Analogies 0.21 (12549/59776) 0.27 (16121/59776)

Result:
Trapezoids are very well-recovered for subset of analogies where ζ exists.
Parallelograms are far better recovered when ζ exists and ζ = 1 compared to all
analogies in dataset.
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Conclusion & Discussion

Summary
We showed a contrastive learning objective is sufficient in recovering analogies as
parallel lines.

Push-pull method can be mathematically shown to implicitly recover analogies
Geometry of embeddings can be determined a priori training on corpus from
co-occurrence statistics
Analogy pairs tend to follow a specific co-occurrence pattern, while other word
pairs do not
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Conclusion & Discussion

Future Directions
Full theoretical analysis of contrastive learning approach on sequential data generated
with synthetic model

Issue with natural language: large noise, and analogies are a subjective
construct. Can we polish the relationship in Theorem 2 and analyze the
optimization procedure of how push-pull exactly leads to the formation of
parallel lines?
The empirical results we show merely indicate sufficiency of push-pull for
implicitly encoding analogies as parallel lines. Can we show necessity?
Sample complexity for recovering analogies: bounds on no. of samples
required to learn analogies as parallel lines?
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