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1 Introduction
Recent literature has demonstrated the capacity of Transformer decoder models to perform in-
context learning in linear regression models. These models are trained on input-output pairs gen-
erated by randomly chosen weight vectors, and studies have shown that they can achieve ordinary
least squares (OLS) loss in both noiseless and noisy linear regression learning settings (Garg et al.,
2023; Akyürek et al., 2022).

This short report investigates whether the same model architecture is capable of model selection
among similar tasks. Specifically, we explore the scenario where the model is trained on data
generated from T types of models and is given a set of data points with labels produced by one of
the possible models at testing time to use as in-context examples along an unlabeled input. The
model must then generate an output for the input based on the provided examples.

We focus on the simple setting where |T | = 2, consisting of the noiseless and noisy linear
regression tasks. We test various parameters to determine when the ability to perform model
selection is acquired.

2 Problem Setup
We adopt the procedure in Garg et al. (2023) and sample a set of input points x1, . . . , xn and a
random unit vector w of dimension d from an isotropic Gaussian distribution, which is used as the
weight vector. The labels for each input data point are generated by computing yi = w⊺xi for all i ∈
[n]. The Transformer architecture takes the concatenated input sequence (x1, y1)|(x2, y2)|, ...|(xn, yn)|(xn+1)
and is trained to predict the value of yn+1.

During testing, a new weight vector w and a set of input points x1, . . . , xn are randomly se-
lected to construct the in-context examples. The model takes the concatenated input sequence
(x1, y1)|(x2, y2)|, ...|(xn, yn)|(xn+1) as input and predicts the value of yn+1.

Model Layers Emb. Space Heads

Tiny 3 64 2
Small 6 128 4
Standard 12 256 8

Table 1: Model architecture details.

1



0 10 20 30 40 50
# in-context examples

0

2

4

6

8

10
M

SE
 fo

r N
oi

se
le

ss
 D

at
a

learned estimator
OLS
Ridge with alpha 0.5
Ridge with alpha 1
Ridge with alpha 2
Ridge with alpha 5
Ridge with alpha 10

0 10 20 30 40 50
# in-context examples

0

2

4

6

8

10

M
SE

 fo
r N

oi
sy

 D
at

a

learned estimator
OLS
Ridge with alpha 0.5
Ridge with alpha 1
Ridge with alpha 2
Ridge with alpha 5
Ridge with alpha 10

(a) ϵ = 0.5
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(b) ϵ = 1
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(c) ϵ = 2
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(d) ϵ = 10

Figure 1: Experiments with d = 5, n = 51 with curriculum learning. Top plot indicates MSE loss
for noiseless case, bottom plot indicates MSE loss for noisy case where noisy data is perturbed with
Gaussian noise from N(0, ϵ).

A list of available models is provided in Table 1. For all experiments run in this report, we use
the Standard model where Transformer decoders are stacked to construct the models.

3 Experiments
To validate the capability of the model for model selection in linear regression, we employ a training
approach using a mixture of noisy and noiseless data.

At each time step, we randomly sample a weight vector and input data to generate noiseless
training data for the model. We then introduce Gaussian noise N(0, ϵ) to the output data yi with
a probability of 1

2 , where ϵ is predefined by the user.

3.1 Validation on Training Distribution
Procedure We evaluate the performance of our model by generating training data (x1, y1), . . . , (xn, yn)
in a similar manner to the training phase, where we randomly sample a weight vector and input
data to pass to the model.

We test the model on two cases: when the input data xi is not perturbed by noise, and when the
data is perturbed by Gaussian noise with variance ϵ, i.e xi = xi + δ where δ ∼ N(0, ϵ). The model
is then fed the training data (x1, y1)| . . . |(xk) and we compute the mean squared error between the
predicted value ŷk and the ground truth value yk.

Note that during testing, the model is provided with the correct yk value instead of using the
output of the model at the (k + 1)th time step (also known as teacher forcing), i.e. the sequence
(x1, y1)| . . . |(xk, yk)|(xk+1) is used as input at the next time step.
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(a) ϵ = 0.5, ϵ′ = 1, 2, 10
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(b) ϵ = 1, ϵ′ = 0.5, 2, 10
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(c) ϵ = 2, ϵ′ = 0.5, 1, 10
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(d) ϵ = 10, ϵ′ = 0.5, 1, 2

Figure 2: Experiments with distribution shifts of the input data distribution. ϵ denotes the noise
rate the model encounters during training, ϵ′ denotes the noise rate of the test data. Note that all
experiments use noisy data. Graph colors inherit from Figure 1.

Results The experimental results for d = 5 and n = 51, where n represents the number of in-
context examples, are presented in Figure 1. The first row of Figure 1 shows the loss of the trained
model compared to that of OLS and Ridge Regression, which are parameterized by λ with λ = ϵ.

We observe that the learned estimator closely follows the error curves of Ridge regression with ϵ
as lambda for small enough values of ϵ. However, for significantly large values of ϵ, the model fails
to match the error curves of both OLS and Ridge regression.

3.2 Validation on Distribution Shifts
Testing Procedure In contrast to the previous section, we also test the model’s performance
for the noisy input data case where the test noise rate ϵ′ differs from the noise rate ϵ as what the
model was trained on.

Results Results are given in Figure 2, where the test noise rates are ordered in increasing order
by row. For all experiments, we see that when the model is tested on a different noise rate than
what it encounters during training, the model’s error curves does not necessarily match that of
ridge regression with λ = ϵ.

In Figure 2b where ϵ = 1, ϵ′ = 0.5, 1, we see that the model’s error curves match that of ϵ = 1
but does not match when ϵ′ = 10.
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We also inconsistently see cases where the model’s curve matches that of ridge regression with
a different value for λ. Namely, for the bottom column of Figure 2a, we see that the error curve of
the model most closely matches that of λ = 2. Note that the MSE values are drastically larger than
other cases for ϵ′ = 10, and thus the two graphs are not necessarily closely matching in comparison
to other error rate cases.

For ϵ = 10 (Figure 2d), we see that the model’s error curves hover above all other error curves,
indicating the deficiency of training the model with a dramatically large noise rate.

4 Discussion
Is Curriculum Learning Necessary? Garg et al. (2023) empirically observed that the model
takes a dramatically longer amount of time to train until the model’s loss at test time matches OLS.
We have utilized curriculum learning throughout the experimennt as it is unlikely that removing
curriculum learning from the training procedure has any interesting effects on the model selection
task.

Potentially Interesting Questions We list a number of potential directions for future research:

• Taking inspiration from Akyürek et al. (2022), can we mathematically show that it is pos-
sible to implement some kind of "model selection" algorithm using the Transformer decoder
architecture?

• Is there a lower bound on the architecture complexity for the emergence of model selection
as a function of the dimensions and number of in-context examples?
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