
Deep Embedded Clustering

Narutatsu Ri

June 13, 2022

1 Introduction

Deep Embedded Clustering (DEC) [XGF16] is a methodology that concurrently learns cluster
centroids utilizing Lloyd’s Algorithm for the k-means problem and a non-linear re-representation of
the data within a reduced dimension. This approach effectively combines the tasks of dimensionality
reduction and clustering, which are typically performed sequentially.

This report arises from an independent endeavor to re-implement the model entirely from
scratch. The objective is to provide an overview of DEC’s operational principles, as well as to
present and compare the obtained results against those reported in the original research publica-
tion [XGF16].1

2 Motivation for Deep Embedded Clustering

The motivation for integrating dimensionality reduction and clustering tasks stems from the funda-
mental requirements of clustering analysis. In any clustering algorithm, the notion of dissimilarity
is essential, and the data representation employed must possess favorable characteristics. Ideally,
data points belonging to the same cluster should exhibit proximity in terms of distance, while those
from different clusters should display distinctiveness.

However, clustering analysis is inherently unsupervised, lacking explicit labels for evaluating the
quality of a representation. While visual inspection can be employed for small datasets, it becomes
impractical and challenging with a large number of data points. Consequently, a need arises for a
methodology that can address this problem in an unsupervised setting.

Deep Embedded Clustering (DEC) presents a solution to this challenge, drawing inspiration from
unsupervised metric learning principles. The central idea behind DEC lies in seamlessly integrating
the unsupervised clustering task with the dimensionality reduction task, which resembles metric
learning. Individually, these tasks are not conceptually complex, but the novelty lies in their
synergistic connection within a cohesive model.

3 Formulation

In essence, DEC operates according to the following steps:

1Full code accessible at the following repository: https://github.com/narutatsuri/deep_embedded_clustering.

1

https://github.com/narutatsuri/deep_embedded_clustering

Figure 1: Diagram of the DEC model.

Algorithm 1: Deep Embedded Clustering Algorithm

Input : Original data
Output: Final re-representation and cluster centroids

1. Generate initial re-representation using a DNN;
2. Apply clustering algorithm (e.g., Lloyd’s Algorithm) to the re-represented data,
obtaining cluster centroids and an updated re-representation;
3. Evaluate quality of re-representations and cluster assignments using a unique approach;
4. Adjust re-representation and update the DNN and cluster centroids;
5. Repeat steps 1 to 4 until desired level of satisfaction is achieved;

Notably, DEC exhibits distinct characteristics primarily in two aspects: the generation of ini-
tial embeddings (a notable concern arises due to the non-random initialization of the embeddings,
which will be addressed later), and the methodology employed to assess the quality of the embed-
dings and cluster assignments. The remaining steps either adhere to the aforementioned aspects or
incorporate traditional methodologies.

Step 1. The authors employ a Stacked Autoencoder (SAE) model, consisting of multiple autoen-
coders arranged in a stacked manner, which is motivated by prior research [VLL+10]. While there
is no formal mathematical proof supporting this approach, it is based on empirical evidence. Figure
1 provides a generalized diagram depicting the model’s architecture.

The construction and training of individual autoencoders are performed to achieve data recon-
struction. Two designated autoencoders are identified as the input and output layers, reflecting
their position within the stacked configuration. The autoencoders’ encoder and decoder compo-
nents are separated, stacked, and combined to form the SAE structure. Subsequently, the stacked
model is retrained using the dataset, discarding the decoder portion and retaining only the encoder.
This encoder component serves as the Deep Neural Network (DNN) responsible for re-representing
the original data in the embedded space.

Step 2. The data is passed through the DNN (i.e., the encoder of the SAE) to obtain initial em-
beddings. Subsequently, clustering is applied to the re-represented data using a standard clustering
algorithm, such as k-means. The clustering process leads to the identification of cluster centroids,
while the determination of the number of clusters, denoted as K, follows traditional approaches
associated with the k-means problem.

2

Step 3. In this step, the authors draw inspiration from t-SNE, a method primarily utilized for
data visualization. The fundamental idea of t-SNE is to learn a distance converted to a probability
distribution around each point. The authors aim to define a soft cluster assignment, denoted as
qij , representing the likelihood of data point i being assigned to cluster j based on the current
representation. Additionally, a hard cluster assignment, denoted as pij , is introduced for each
point. The equations governing these assignments are as follows:

qij =
(1 + |zi − µj |2/α)−

α+1
2∑

j′(1 + |zi − µj′ |2/α)−
α+1
2

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

Here, zi represents the re-represented data point in the embedding space, µj denotes the cluster
centroid, and α serves as a hyperparameter controlling the shape of the distribution. The Euclidean
distance between the data point and cluster centroid is quantified by ∥zi − µj∥2. The expression
for qij corresponds to the Student’s t-distribution, while pij represents a normalized version of qij .

The aim is to achieve concordance between the distributions qij and pij , effectively refining the
initialization through iterative steps.

Step 4. The authors employ the Kullback-Leibler (KL) divergence to compare pij and qij . By
computing the partial derivatives with respect to zi and µj , the gradients are obtained, allowing for
the update of the embeddings and cluster centroids. The DNN is then retrained using the updated
embeddings, while the adjustments to the cluster centroids involve modifying their values without
altering the overall structure.

An alternative perspective on DEC is to view it as a specialized form of multiclass classification.
In traditional multiclass classification using a Deep Neural Network (DNN), the output typically
consists of a multinomial probability distribution. The selected class for a given input is determined
by choosing the element with the highest value in the distribution.

In the case of DEC, the desired output takes the form of a one-hot vector, where the index
corresponding to the attributed class is assigned a value of 1, while the remaining indices are set to
0. The responsibility of learning this highly specific multinomial distribution lies with the DNN.

DEC alleviates this burden by allowing for more flexible outputs from the DNN. Instead of
strictly mapping to a harsh one-hot vector, the outputs can gradually shift towards the correct
answer, reducing the complexity imposed on the DNN.

4 Results

Figure 2 displays the obtained results. The left plot showcases the initial cluster embeddings,
representing a subset of the MNIST dataset, and the right plot represents the final result.

Upon observing the left plot, a question arose regarding its quality, as it already appeared quite
satisfactory. In fact, it exhibited a clustering accuracy ranging from approximately 70% to 80%.
Although the authors acknowledge that SAE is known for yielding favorable results, the obtained
accuracy seemed remarkably high, possibly encroaching on the role of DEC itself.

3

Figure 2: DEC applied on test data. Left is output of the stacked autoencoder, and right is the
output of DEC.

The paper includes a figure, namely Figure 5(f), which illustrates the relationship between
KL Divergence and cluster accuracy. Despite the unsupervised nature of the approach, the authors
employed the MNIST dataset, assigning cluster labels through majority voting to evaluate accuracy.
The figure reveals that even with k-means initialization, an accuracy of 80% was achieved, further
increasing to approximately 85% as the KL Divergence loss ”converged.”

4.1 Evaluation of Random Initialization

Subsequently, an intuitive step to take was to explore the possibility of using random initialization
and observe the outcomes. However, this approach proved to be wholly ineffective.

Figure 3 presents the outcomes of this attempt. The left plot illustrates the initial embeddings
subjected to t-SNE, while the right plot showcases the final embeddings processed using t-SNE.
Although the KL Divergence loss exhibited a decreasing trend, the clustering accuracy stagnated
at around 20% with minimal improvement.

Furthermore, the authors assert the enhanced distinctiveness of clusters obtained through DEC
compared to the initial embeddings. To support this claim, they employed a diagram featuring
a subsample of the dataset on which DEC was trained. Specifically, DEC was trained on the
complete MNIST dataset, and a subset of points was randomly selected from each cluster with
equal probability.

It is important to note that inferring properties of the data solely from a t-SNE visualization is
generally disapproved, as discussed earlier. However, the implicit justification in their paper rests
on the assumption that if the clusters exhibit clear separation with discernible margins, t-SNE,
which preserves local structure, would also reflect the same property in the original embeddings.

4.2 Alternate Implementations

Numerous alternative implementations of DEC have been developed by various individuals. Upon
assessing their accuracy, it became apparent that these implementations were yielding results similar
to those reported in the original paper. Consequently, doubts arose regarding the accuracy of my
own code.

4

Figure 3: DEC applied on random initializations. Left shows the initial data (with no stacked
autoencoder applied), and right is DEC’s output.

Upon closer examination of these alternate implementations, it was discovered that they em-
ployed a somewhat deceptive approach. While the original paper stipulates updating z and µ
through partial derivatives and similar procedures, these implementations opted to update z and µ
explicitly to minimize the discrepancy between p and q. This approach deviates from the implicit
convergence of p and q that occurs through the prescribed updating method outlined in the pa-
per. While both methods should theoretically yield equivalent outcomes, the justification for this
approximate approach remains uncertain. However, the authors of these implementations argue
that minimizing KL Divergence reinforces the differentiation of clusters, and in this regard, their
approximation technique can be deemed acceptable.

Based on this observation, it can be surmised that the discrepancies in my own results may
stem from the differing update methods employed for z and µ, as these alternate implementations
achieve favorable outcomes through a distinct methodology.

5 Conclusion & Future Directions

In conclusion, it is not uncommon for implementation-focused papers to appear somewhat super-
ficial, particularly when examining marginal increases in accuracy. However, the true essence of
papers such as DEC lies in the novel ideas they propose regarding the combination of dimension-
ality reduction and clustering, demonstrating the feasibility of such approaches. Furthermore, the
authors’ modeling assumptions, including the update mechanism utilizing p and q, provide avenues
for further investigation. These assumptions can be evaluated through empirical validation, show-
casing favorable results on specific datasets, or through rigorous mathematical justifications. While
skepticism may initially pervade when approaching implementation papers, a broader and deeper
understanding of their significance can be attained.

Further avenues of research can be explored to expand upon the concepts introduced in DEC.
An additional paper, authored by an individual who also developed a customized implementation of
DEC, delves into the preservation of local structure within clusters prior to embedding. While DEC
aims to retain the implicit clusters present in the original data representation, thereby preserving
global structure, it does not guarantee the preservation of local structure within each cluster. The
aforementioned paper addresses this concern by proposing potential solutions.

5

References

[VLL+10] Pascal Vincent, H. Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. J. Mach. Learn. Res., 11:3371–3408, 2010.

[XGF16] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clus-
tering analysis, 2016.

6

	Introduction
	Motivation for Deep Embedded Clustering
	Formulation
	Results
	Evaluation of Random Initialization
	Alternate Implementations

	Conclusion & Future Directions

