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ABSTRACT

Static word embeddings possess the remarkable property of additive composition, facilitating the
recovery of semantic analogies through basic vector arithmetic. However, previous studies have
predominantly focused on analyzing these learned embeddings without considering the normalization
of vector lengths, despite the common practice of normalizing word embeddings prior to their
application in downstream tasks.
In this report, we explore the capabilities of length-normalized word embeddings in representing
word analogies as parallelograms within the embedding space. We reduce the problem of embedding
words on the d-sphere to solving a system of linear equations, and demonstrate the representation
dimension of the embeddings necessarily scales with the number of analogy conditions.

1 Introduction

Dense vector representations such as word2vec [Mikolov et al., 2013a] and GloVe [Pennington et al., 2014], are built
upon the premise that the inner product of two vectors should reflect the statistical co-occurrence of their corresponding
words in the training corpus. Interestingly, these embeddings possess a property known as additive compositionality
[Mikolov et al., 2013b], enabling elementary vector arithmetic to capture semantic analogies such as "man : woman =
king : queen." Alongside empirical investigations, a surge of theoretical explanations aimed at unraveling how these
models implicitly learn analogy relationships have emerged, prompted by the observation of additive compositionality
in word2vec.

However, while empirical studies consistently employ normalized vectors, most studies do not take vector length
into consideration, and studies that target the properties of normalized word vectors is scarce [Schakel and Wilson,
2015]. No study has systematically debunked the properties of normalized word vectors or considered their limitations
in expressiveness. To address this gap, we investigate the conditions on embedding n points on the d-dimensional
Euclidean ball while satisfying C analogy conditions.

2 Related Work

Word Embedding Models. Dense vector representations were popularized by word2vec and the GloVe model. Various
alternate representations have been explored [Bojanowski et al., 2016, Seonwoo et al., 2019], but word2vec still remains
as the most popular choice. In recent years, static word embeddings in non-Euclidean spaces have also garnered interest
[Leimeister and Wilson, 2018, Nurmukhamedov et al., 2022, Dhingra et al., 2018, Meng et al., 2019, Nickel and Kiela,
2017, Tifrea et al., 2018] . Such studies show that embedding word vectors in non-Euclidean space provides empirical
benefits such as the capability to capture hierarchical word similarities.

Theory. The first attempts to debunk the mechanism of word embedding models is by Levy and Goldberg [2014], who
claim that word2vec is implicitly factorizing the shifted Pointwise Mutual Information (PMI)1 matrix.

Follow-up work in Li et al. [2015] attempt to show that word2vec is explicitly factorizing the word co-occurrence matrix.
Hashimoto et al. [2016] formulate learning dense word embeddings as metric recovery of a vector space over concepts

1For words i, j, PMI is defined as PMI(i, j) = log #(i,j)

#(i)⋅#(j)
, where #(i, j) denotes co-occurrence count between i and j.
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where Euclidean distances between points are assumed to represent semantic similarities using word co-occurrence
statistics.

The first attempts to understand how word2vec implicitly learns analogies are by Arora et al. [2015], who propose
that analogies are recovered as parallel lines whe word embeddings recover PMI statistics with vector products under
specific generative assumptions on the dataset. Follow-up work in Gittens et al. [2017] define the notion of a paraphrase
and explain the formation of analogies with paraphrases. Recent studies take inspiration from Gittens et al. [2017] and
improve upon the formulation of analogies as paraphrases by showing the condition in Gittens et al. [2017] holds with
weaker assumptions [Allen and Hospedales, 2019, Allen et al., 2018, Ethayarajh et al., 2019].

3 Problem Construction

3.1 Notation

Denote the number of points to embed as n, the number of analogy relationships as C. Denote the dimension of the
embedding space as d. Denote words as a, b, . . . and their dense vector representations as a⃗, b⃗, . . . . d will be the number
of dimensions and n will be the number of words to embed.
Definition 3.1 (Relation). A relation is defined as a ordered semantic relationship between any two words a, b,
expressed as ra,b = (a ∶ b). Denote a as the source and b as the sink.

Relations are not symmetric (ra,b ≠ rb,a). An example is "rman,woman = (man ∶ woman)" where rman,woman represents
the relation of change of gender from male to female, which is not equivalent to rwoman,man. Note that the explicit
representation of a relation need not be known.
Definition 3.2 (Analogy). An analogy is a relationship that exists between two relations iff the two relations are
equivalent, and we say the analogy expresses the relation.

For example, for relations ra,b = (a ∶ b), rc,d = (c ∶ d), the relations ra,b, rc,d form an analogy iff ra,b = rc,d. Then, the
words a, b, c, d satisfy (a ∶ b) = (c ∶ d).
Definition 3.3 (Concept). A concept ci is a set of equivalent relations.

We say that the concept expresses the relation and denote it as rci . We will represent the set of words participating in
the concept with wci . The set of words that participate in each relation as a source is denoted as a source set and the set
of words that participate in each relation within each analogy as a sink is denoted as a sink set.

For example, for words a, b, c, d, e, f , if ra,b = rc,d, ra,b = re,f then there exists a concept for the set of points
participating in the relations, expressed as c = {(a ∶ b), (c ∶ d), (e ∶ f)}. The source set is {a, c, e} and the sink set is
{b, d, f}, and rc = ra,b(= rc,d = re,f). Additionally, wc = {a, b, c, d, e, f}. Note that concepts must contain an even
number of words, multiple concepts can contain the same word, and the relation a concept expresses must be unique.

Next, we define three common types of point overlap between concepts.
Definition 3.4 (Weak Overlap). Two concepts c1, c2 are weakly overlapping when ∣wc1 ∩wc2 ∣ = 1.
Definition 3.5 (Strong Overlap). k concepts c1, c2, . . . , ck are strongly overlapping when c1, . . . , ck either have the
same source set or sink set.
Definition 3.6 (Strict Overlap). Two concepts c1, c2 are strictly overlapping when wc1 = wc2 .

Note that by Assumption 3, as ∣wc1 ∣, ∣wc2 ∣ ≡ 0 mod 2 holds true, all points in wc1 ,wc2 each participate in exactly 2
relations expressing each concept when c1, c2 strictly overlap.
Definition 3.7 (Embeddability). n words and concepts C are embeddable if the vector representations for all n words
can be placed on a specified subspace in dimension d while preserving all analogy conditions for all concepts.

While other arrangements of overlap between concepts are possible, we will focus on the embeddability of strong and
strict overlaps as they are the most common and interesting forms of analogies that occur in natural language.

3.1.1 Assumptions

Assumption 1. All n words participate in at least one concept.

The assumption implies that the embeddings for any of the n words cannot be freely chosen. Otherwise, the embedding
of the word can be arbitrarily placed in the embedding space.
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Assumption 2. The set of concepts are consistent. In other words, they are embeddable in some dimension d without
contradiction.
Assumption 3. For two concepts c1 and c2, if ∣wc1 ∩wc2 ∣ > 2, ∣wc1 ∩wc2 ∣ ≡ 0 mod 2 (i.e. they share an even number
of points greater than 2), then each shared point must form both the relation rc1 with another shared point and the
relation rc2 with another different shared point.
Assumption 4. For two concepts c1 and c2, if ∣wc1 ∩wc2 ∣ > 1, ∣wc1 ∩wc2 ∣ ≡ 1 mod 2 (i.e. they share an odd number
of points greater than 1), then the shared points must all be either only sinks or sources.

For example, given words a, b, c, d, e, f, g, h, if we assume concept c1 expresses the relation r1 = ra,b = rc,d = re,f =
rg,h = (a ∶ b) ∶ (c ∶ d) ∶ (e ∶ f) ∶ (g ∶ h), then the second concept denoted c2 can only express a relation equivalent to
r2 = ra,c ∶ rb,d ∶ re,g ∶ rf,h and cannot be any arbitrarily chosen set of relations.

Assumptions 3 and 4 are attributed to how analogies are generally observed to form in natural language. For example,
for the words "man, woman, king, queen, boy, girl, prince, princess" there exists a relation expressing the concept of
change of gender from masculine to feminine where the analogies are "(man : woman) = (king : queen) = (boy : girl) =
(prince : princess)". There can also exist a relation expressing the concept of royalty where the analogies are "(man :
king) = (woman : queen) = (boy : prince) = (girl : princess)", but analogies that attempt to represent the relationship
between "(man : queen)" are drastically rarer.

3.2 Problem Construction

Here, we prove various properties for points on the surface of an L2 ball residing in d dimensions. We will denote the
unit L2 ball as Sd. All proofs are included in the Appendix.
Lemma 3.1. For any two distinct arbitrary points x, y ∈ Sd, Sd ⊂ Rd, the vector l = x − y satisfies the properties
x ⋅ l = −y ⋅ l, ∥x − projl x∥2 = ∥y − projl y∥2.

Lemma 3.1 implies that for two arbitrary points there always exists a direction in the space where the two points have
equal L2 distance from. If we translate the points in a way such that the axis is a scalar multiple of a basis vector, then
the two points will have the same values for all entries besides one, which takes the negative value of the other point’s
corresponding entry. For simplicity, we will denote such an l as the axis.

Moreover, we show a property for four points residing on Sd in Rd that form a parallelogram must satisfy.
Lemma 3.2. Consider two distinct arbitrary points x, y ∈ Sd, Sd ⊂ Rd and a corresponding axis l where the conditions
of Lemma 3.1 are satisfied.

For two other distinct points a, b ∈ Sd, if x−y = b−a, then ∥x−projl x∥
2
2 = ∥y−projl y∥

2
2 = ∥a−projl a∥2 = ∥b−projl b∥2.

Lemma 3.2 informs us the condition any four points need to satisfy to form an analogy geometrically. For all pairs of
words in a concept, the word vectors must adhere to this condition. We can geometrically consider the region where the
points can reside as the set of points that are of distance r from an axis l on the surface of Sd.

Now, we formalize the above into a mathematical expression for the set of points:
Lemma 3.3. For a concept c, given an arbitrary unit vector l whose direction represents the axis and a radius 0 < r < 1,
the embeddings x of the words participating in c satisfy the property:

d

∑
i=1

xili =
√
1 − r2

where xi, li denote the ith entry of the vectors x, l respectively.

Note that not all set of points xi that satisfy the equality ∑d
i=1 xili =

√
1 − r2 must be an embedding for a word. Instead,

satisfying the equality is a necessary condition; if a word is participating in a concept, its embedding must satisfy the
equality, but the converse is not necessarily true.

Now, consider two concepts c1, c2 that have overlapping points. By Lemma 3.3, the regions that embeddings can reside
in when participating in each concept can be represented as:

d

∑
i=1

x
(1)
i l

(1)
i =

√

1 − (r(1))2,

d

∑
i=1

x
(2)
i l

(2)
i =

√

1 − (r(2))2,

3
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where x(1), x(2) represents the regions for c1, c2 respectively.

Thus, for embeddings that participate in both concepts, we only need to solve for the set of points x that satisfy both
equations. Finding the regions that overlapping points can reside in reduces to solving a system of linear equations in
addition to the nonlinear equation that x must reside on Sd, namely ∥x∥2 = 1.

3.3 Dimensionality for Embedding Analogies

With the above constructions, we consider the relationship between the dimensionality d and the analogy relationships
C for embedding n points on Sd.
Theorem 3.4 (Embeddability of Disjoint Concepts). If ∀i, j ∈ [∣C ∣], i ≠ j ∶ ∣wci ∩wcj ∣ = 0, then for any n ≥ 4, all n
points can be embedded on S2 for d = 3.
Theorem 3.5 (Embeddability of Weak Overlaps). If ∃i, j ∈ [∣C ∣], i ≠ j ∶ ∣wci ∩wcj ∣ = 1, for any n ≥ 4, all n points can
be embedded on S2 for d = 3.

Note that the statement still holds even if there are more than two overlapping concepts on the same word as we can
choose an arbitrary number of linear equations that include a particular point in its region.

Now, we consider when there exists concepts that have strict overlap.
Theorem 3.6 (Embeddability of Strong Overlaps). For any n ≥ 4, if k ≤ ∣C ∣ concepts strongly overlap, then the
concepts can be embedded in Sd−1 where d ≥ k + 2.

Before we consider strong overlaps between k concepts, we first establish a condition that the axes li need to satisfy for
all k analogy conditions to be satisfied in the embeddings.
Lemma 3.7. For an arbitrary set of four embeddings a, b, c, d and concepts c1, c2, if the analogies (a ∶ b) = (c ∶ d), (a ∶
c) = (b ∶ d) hold and represent the concepts c1, c2 respectively, then the axes l1, l2 must be orthogonal for each concept.

Lemma 3.7 can be trivially generalized to k concepts with strict overlap, in which case at least k orthogonal axes are
required.
Theorem 3.8 (Embeddability of Strict Overlaps). For any n ≥ 4, if k ≤ ∣C ∣ concepts strictly overlap, then C can be
embedded in Sd−1 for any d ≥ k + 2.

The contrast between Lemma 3.7 and Therorem 3.8 is whether the orthogonality of the axes. This has no effect on the
system of equations, as the coefficients are independent.

Note that k strictly overlapping concepts can be embedded in d = k + 1 dimensions with a limitation on the number of
words that are able to participate in the concepts. Namely, this construction will yield at most 2k+1 possible number of
embeddable words, as the common region between k systems of linear equations with the unit norm constraint gives
two possible values for each dimension.

4 Conclusion

We have explored the relationship between concept overlaps and the minimum number of dimensions necessary to
preserve all analogy conditions. By considering the interplay between concept overlaps and dimensionality, our findings
contribute to a deeper understanding of the fundamental aspects of word embeddings and their ability to capture
semantic relationships. The insights gained from this study shed light on the possibilities and limitations of embedding
techniques, providing valuable guidance for the design and application of word embeddings in various natural language
processing tasks.

Note that while our approach focused on determining the possible regions where points can reside to satisfy the
analogies rather than precisely pinpointing their positions in space, the arrangement of the points can be achieved by
sequentially placing them in space while deliberately selecting appropriate words once the region is identified.
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A Proofs

A.1 Proof of Lemma 3.1

First, we show x ⋅ l = −y ⋅ l:

x ⋅ l = x ⋅ (x − y) = ∥x∥22 − xy

= 1 − xy (∵All points are on Sd
)

= ∥y∥2 − xy

= −y ⋅ (x − y)

= −y ⋅ l.

Now, we show ∥x − projl x∥2 = ∥y − projl y∥2. Using the fact ∥x∥2 = ∥y∥2 = 1,

∥x − projl x∥
2
2 = ∥x − (x ⋅ l̂)l̂∥

2
2 = ∥x − (x ⋅

x − y

∥x − y∥2
)

x − y

∥x − y∥2
∥

2

2

= ∥x∥22 + 2(x ⋅ (x ⋅
x − y

∥x − y∥2
)

x − y

∥x − y∥2
) + ∣∣ (x ⋅

x − y

∥x − y∥2
)

x − y

∥x − y∥2
∣∣

2

2

= 3 + (
1 − xy

∥x − y∥2
)

2

∥y − projl y∥
2
2 = ∥y − (y ⋅ l̂)l̂∥

2
2 = ∣∣y − (y ⋅

x − y

∥x − y∥2
)

x − y

∥x − y∥2
∣∣

2

2

= ∥y∥22 + 2(y ⋅ (y ⋅
x − y

∥x − y∥2
)

x − y

∥x − y∥2
) + ∣∣ (y ⋅

x − y

∥x − y∥2
)

x − y

∥x − y∥2
∣∣

2

2

= 3 + (
xy − 1

∥x − y∥2
)

2

Thus, ∥x − projl x∥
2
2 = ∥y − projl y∥

2
2⇔ ∥x − projl x∥2 = ∥y − projl y∥2. ∎

A.2 Proof of Lemma 3.2

Without loss of generality, consider a translation of the points x, y, a, b such that l is a basis and the entries of x, y
are equal besides the dth entry where xd = −yd and denote ∥x − projl x∥

2
2 = ∥y − projl y∥

2
2 = R. We first show that if

x − y = a − b, then ∥a − projl a∥2 = R. Note that ∥a∥2 = ∥b∥2 = 1.

x − y = b − a⇔ b = a + (x − y). As ∥b∥2 = 1, if we denote the ith entry of a vector v as vi,

∥a + (x − y)∥22 = (a1 + (x1 − y1))
2
+ (a1 + (x1 − y1))

2
⋅ ⋅ ⋅ + (ad + (xd − yd))

2

=
d

∑
i=1

a2i + 2
d

∑
i=1

(ai(xi − yi)) +
d

∑
i=1

(xi − yi)
2
= 1

By construction, ∀i ∈ [d − 1] ∶ xi = yi, so
d

∑
i=1

a2i + 2
d

∑
i=1

(ai(xi − yi)) +
d

∑
i=1

(xi − yi)
2
=

d

∑
i=1

a2i + 2(ad(xd − yd)) + (xd − yd)
2
= 1

⇔ ad =
−(xd − yd)

2

2(xd − yd)
=
−4x2

d

4xd
= −xd

Note that as ∥x∥2 = 1,∑
d−1
i=1 x2

i = R as ∥x − projl x∥
2
2 is equivalent to the distance between x and the axis. Then,

x2
n = 1 −R.

As ∥a∥2 = 1,
d−1

∑
i=1

a2i + a
2
d = 1⇔

d−1

∑
i=1

a2i = 1 − a
2
d = 1 − (1 −R) = R

A similar argument can be made for b. ∎
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A.3 Proof of Lemma 3.3

Consider a vector x that is distance r away from the axis. This is equivalent to

∥x − projl x∥ = r

Moreover, by construction, (x ⋅ l)2 + r2 = 1⇔ (x ⋅ l)2 = 1 − r2.

Utilizing this,

∥x − projl x∥
2
= ∥x − (x ⋅ l)l∥2

=
d

∑
i=1

⎛

⎝
xi −

d

∑
j=1

(xj lj)li
⎞

⎠

2

=
d

∑
i=1

x2
i − 2

d

∑
i=1

xi

d

∑
j=1

(xj lj)li +
d

∑
i=1

⎛

⎝

d

∑
j=1

(xj lj)lj
⎞

⎠

2

= 1 − 2
√
1 − r2

d

∑
i=1

xili + 1 − r
2

= r2

Thus, ∑d
i=1 xili =

√
1 − r2. ∎

A.4 Proof of Theorem 3.4

Consider an arbitrary concept c ∈ C. We show that if ∣wc∣ > 4, then the words cannot be embedded on S1 while
preserving all analogies.

By Lemma 3.2, for word embeddings to form analogies, we consider an arbitrary axis l and a radius r of which the
embeddings of the words satisfy the conditions:

∥vi∥2 = 1,

d(vi, l) = r,

where d(vi, l) denotes the distance from the word embedding for word i to the axis l. Note that for any l there exists at
most 4 points that are of distance r from l on the surface of the unit ball (the unit circle in d = 2). Thus, there can be at
most 4 words participating in the concept.

Conversely, when d ≥ 3, the set of points that satisfy the above two conditions form a subspace Sd−1 of which the
cardinality is uncountably infinite. Thus, an arbitrary number of points can participate in c. ∎

A.5 Proof of Theorem 3.5

We want to find the lowest d where the system of two linear equations

d

∑
i=1

x
(1)
i l

(1)
i =

√

1 − (r(1))2

d

∑
i=1

x
(2)
i l

(2)
i =

√

1 − (r(2))2

can intersect while being able to assign as many words to each concept as possible.

When d = 3, if we want to find the embeddings x that satisfy both equations, the above becomes:

x1l
(1)
1 + x2l

(1)
2 + x3l

(1)
3 =

√

1 − (r(1))2,

x1l
(2)
1 + x2l

(2)
2 + x3l

(2)
3 =

√

1 − (r(2))2,

with the constraint x2
1 + x

2
2 + x

2
3 = 1. With 3 equations and 3 unknowns, we are able to embed a finite set of points that

satisfy the above equations. ∎
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A.6 Proof of Theorem 3.6

Given k overlapping concepts, we are required to solve for the linear system of k equations:

d

∑
i=1

xil
(1)
i =

√

1 − (r(1))2

d

∑
i=1

xil
(2)
i =

√

1 − (r(2))2

. . .

d

∑
i=1

xil
(k)
i =

√

1 − (r(k))2,

with the constraint ∑d
i=1 x

2
i = 1, therefore k + 1 equations. To exhibit an arbitrary number of overlapping points, there

must be at least k + 2 unknown variables. This condition is only satisfied when d ≥ k + 2. ∎

A.7 Proof of Lemma 3.7

By Lemma 3.1, we know that l1, l2 can be chosen such that l1 = 1
∥a−b∥

(a − b), l2 =
1

∥a−c∥
(a − c). From the conditions

on the concepts, the condition

a − b = c − d

a − c = b − d

holds. Therefore,

∥a − b∥2 = ∥c − d∥2

⇔∥a∥2 + ∥b∥2 − 2a ⋅ b = ∥c∥2 + ∥d∥2 − 2c ⋅ d

⇔2 − 2a ⋅ b = 2 − 2c ⋅ d

⇔a ⋅ b = c ⋅ d.

Now, consider the inner product (a − b) ⋅ (a − c):

(a − b) ⋅ (a − c) = ∥a∥2 − a ⋅ b − a ⋅ c + b ⋅ c

= 1 + c(b − a) − a ⋅ b

= 1 + c(d − c) − a ⋅ c

= 1 − 1 + cd − ab

= 0.

Therefore, a − b ⊥ a − c⇒ l1 ⊥ l2. ∎

A.8 Proof of Theorem 3.8

Generalizing Lemma 3.7, we know that k orthogonal axes are required to embed k strictly overlapping concepts,
meaning d ≥ k must hold true. Given k linear equations where the vectors constructed by the coefficients li are all
mutually orthogonal, we have k+1 equations to satisfy. To ensure an arbitrary number of points can reside in the region,
we require d ≥ k + 2. ∎
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