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Abstract

Static word embeddings exhibit additive composition properties that facilitate the recovery
of linguistic analogies through vector arithmetic. However, existing analyses have predominantly
neglected the impact of vector length normalization, despite its common application in down-
stream tasks. This paper investigates the capabilities of length-normalized word embeddings
in representing word analogies as parallelograms within the embedding space. We formulate
the embedding of words on the unit sphere in Rd as a system of linear equations and demon-
strate that the required representation dimension scales with the number of analogy conditions.
Our findings provide insights into the geometric structure of normalized embeddings and their
capacity to capture different analogy relationship configurations.

1 Introduction

Word embeddings, such as those generated by Word2Vec (Mikolov et al., 2013a) and GloVe (Pen-
nington et al., 2014), are trained so that inner products between word vectors approximate the
co-occurrence statistics of their corresponding words. A well-studied property of these embeddings
is additive compositionality (Mikolov et al., 2013b), which enables simple vector arithmetic to re-
cover linguistic analogies (e.g., “man : woman :: king : queen”) as parallel structures. Motivated
by empirical observations in Word2Vec and related embeddings, various theoretical studies have
emerged to explain how these models implicitly learn to encode analogies as parallelograms.

Despite the common practice of normalizing word embeddings for downstream tasks, the role of
vector length remains underexplored (Schakel and Wilson, 2015). Few studies have systematically
examined the geometric properties of normalized word vectors or assessed their limitations in
representing analogy constraints. To address this gap, we investigate conditions for embedding
n word vectors in a d-dimensional Euclidean space while satisfying C analogy constraints.

Our analysis shows that certain geometric configurations, specifically those representing analogy
relationships as parallelograms (or rhomboids), cannot be realized on the unit sphere under mild
assumptions. From this finding, we derive lower bounds on the dimensionality required to support
multiple analogy constraints, demonstrating that the necessary embedding dimension scales linearly
with the number of analogies that share words. Since words typically participate in numerous
analogy relationships, this result suggests that a high-dimensional space is required to represent
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these constraints perfectly. As our findings rely on minimal assumptions regarding word similarity
or distributional properties, they establish a fundamental baseline on the dimension necessary for
representing analogy structures.

2 Related Work

Word Embedding Models. Dense, low-dimensional vector representations were popularized
by Word2Vec and the GloVe models. Various alternative representations have been explored (Bo-
janowski et al., 2016; Seonwoo et al., 2019); however, Word2Vec remains the most widely adopted
approach. In recent years, there has been growing interest in static word embeddings within non-
Euclidean spaces (Leimeister and Wilson, 2018; Nurmukhamedov et al., 2022; Dhingra et al., 2018;
Meng et al., 2019; Nickel and Kiela, 2017; Tifrea et al., 2018). These studies demonstrate that em-
bedding word vectors in non-Euclidean geometries offers empirical advantages, such as the ability
to capture hierarchical word similarities.

Theory of Word Embeddings. Initial efforts to elucidate the mechanisms underlying word em-
bedding models were undertaken by Levy and Goldberg (2014), who proposed that Word2Vec im-
plicitly factorizes the shifted Pointwise Mutual Information (PMI)1 matrix. Subsequent work by Li
et al. (2015) attempted to demonstrate that Word2Vec explicitly factorizes the word co-occurrence
matrix. Additionally, Hashimoto et al. (2016) framed the learning of dense word embeddings as a
metric recovery problem within a vector space over concepts, wherein Euclidean distances between
vectors are assumed to represent semantic similarities based on word co-occurrence statistics.

Early investigations into how Word2Vec implicitly captures analogical relationships were con-
ducted by Arora et al. (2015), who suggested that arbitrary word pairs form parallel lines when
word embeddings recover PMI statistics through vector products under specific generative assump-
tions about the training corpora. Follow-up work by Gittens et al. (2017) introduced the concept
of a paraphrase and provided an explanation for the formation of analogies based on paraphrases.
Recent studies have built upon the framework established by Gittens et al. (2017), refining the for-
mulation of analogies as paraphrases and demonstrating that the conditions proposed by Gittens
et al. (2017) hold under less restrictive assumptions (Allen and Hospedales, 2019; Allen et al., 2018;
Ethayarajh et al., 2019).

3 Problem Construction

3.1 Notation

Let n denote the number of words to embed, C denote the number of analogy relationships, and d
denote the dimension of the embedding space. Denote the words as a, b, . . . , with their correspond-
ing vector representations given by a,b, . . . in Rd. Vectors in general will be denoted by x. We
first present preliminary definitions to formalize the notion of analogy relationships.

Definition 3.1 (Relation). A relation is defined as an ordered semantic relationship between any
two words a, b, expressed as ra,b = (a ∶ b). Denote a as the source and b as the sink.

1For words i and j, PMI is defined as PMI(i, j) = log Pr[i,j]
Pr[i]Pr[j] , where Pr[i, j] denotes the co-occurrence probability

of words i and j and Pr[i] denotes the occurrence probability of word i.
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Relations are not symmetric (ra,b ≠ rb,a). An example is “rman,woman = (man ∶ woman),” where
rman,woman represents the relation of change of gender from male to female, which is not equivalent
to rwoman,man. Note that the explicit representation of a relation need not be known.

Definition 3.2 (Analogy). An analogy is a relationship that exists between two relations if and
only if the two relations are equivalent, and we say the analogy expresses the relation.

For example, for relations ra,b = (a ∶ b) and rc,d = (c ∶ d), the relations ra,b and rc,d form an
analogy if and only if ra,b = rc,d. Then, the words a, b, c, d satisfy (a ∶ b) = (c ∶ d).

Definition 3.3 (Concept). A concept ci is defined as a set of equivalent relations. Each concept
expresses a relation, denoted by rci . The set of words participating in the concept is represented
by wci . For each relation, the set of words that act as sources is referred to as the source set, while
the set of words that act as sinks within each analogy is referred to as the sink set.

For example, for words a, b, c, d, e, f , if ra,b = rc,d and ra,b = re,f , then there exists a concept for the
set of points participating in the relations, expressed as c = {(a ∶ b), (c ∶ d), (e ∶ f)}. The source set
is {a, c, e} and the sink set is {b, d, f}, and rc = ra,b(= rc,d = re,f). Additionally, wc = {a, b, c, d, e, f}.
Note that concepts must contain an even number of words, multiple concepts can contain the same
word, and the relation a concept expresses must be unique.

Next, we define three types of word overlap between concepts.

Definition 3.4 (Weak Overlap). Two concepts c1, c2 are weakly overlapping when ∣wc1 ∩wc2 ∣ = 1.

Definition 3.5 (Strong Overlap). k concepts c1, c2, . . . , ck are strongly overlapping when c1, . . . , ck
either have the same source set or sink set.

Definition 3.6 (Strict Overlap). Two concepts c1, c2 are strictly overlapping when wc1 = wc2 .

Note that by Assumption 3, as ∣wc1 ∣, ∣wc2 ∣ ≡ 0 mod 2 holds true, all points in wc1 and wc2 each
participate in exactly 2 relations expressing each concept when c1, c2 strictly overlap.

Definition 3.7 (Embeddability). n words and concepts C are embeddable if the vector represen-
tations for all n words can be placed on a specified subspace in dimension d while preserving all
analogy conditions for all concepts.

While other arrangements of overlap between concepts are possible, we will focus on the em-
beddability of strong and strict overlaps as they are the most common and interesting forms of
analogies that occur in natural language.

3.2 Assumptions

Assumption 1. All n words participate in at least one concept.

This assumption implies that the embeddings for any of the n words cannot be freely chosen.
Otherwise, the embedding of the word can be arbitrarily placed in the embedding space.

Assumption 2. The set of concepts is mutually consistent; that is, they can be embedded in some
dimension d without contradiction.

3



Assumption 3. For two concepts c1 and c2, if ∣wc1 ∩wc2 ∣ > 2 and ∣wc1 ∩wc2 ∣ ≡ 0 mod 2 (i.e., they
share an even number of points greater than 2), then each shared point must form both the relation
rc1 with another shared point and the relation rc2 with another different shared point.

Assumption 4. For two concepts c1 and c2, if ∣wc1 ∩wc2 ∣ > 1 and ∣wc1 ∩wc2 ∣ ≡ 1 mod 2 (i.e., they
share an odd number of points greater than 1), then the shared points must all be either only sinks
or only sources.

For example, given words a, b, c, d, e, f, g, h, if we assume concept c1 expresses the relation r1 =
ra,b = rc,d = re,f = rg,h = (a ∶ b) ∶ (c ∶ d) ∶ (e ∶ f) ∶ (g ∶ h), then the second concept denoted c2 can only
express a relation equivalent to r2 = ra,c ∶ rb,d ∶ re,g ∶ rf,h and cannot be any arbitrarily chosen set of
relations.

Assumptions 3 and 4 are attributed to how analogies are generally observed to form in natural
language. For example, for the words “man, woman, king, queen, boy, girl, prince, princess,” there
exists a relation expressing the concept of change of gender from masculine to feminine where the
analogies are “(man : woman) = (king : queen) = (boy : girl) = (prince : princess).” There can
also exist a relation expressing the concept of royalty where the analogies are “(man : king) =
(woman : queen) = (boy : prince) = (girl : princess),” but analogies that attempt to represent the
relationship between “(man : queen)” are drastically rarer.

4 Embeddability of Analogies as Parallelograms on Sd−1

Here, we establish various properties of points on the surface of a unit ℓ2 ball in d dimensions. The
unit ℓ2 ball is denoted as Sd. All proofs are provided in the Appendix.

Lemma 4.1. For any two distinct points x,y ∈ Sd, where Sd ⊂ Rd, the vector l = x−y satisfies the
following properties:

• x ⋅ l = −y ⋅ l, and

• ∥x − projl(x)∥2 = ∥y − projl(y)∥2,

where projl(x) and projl(y) denote the projection of x and y onto l, respectively.

Lemma 4.1 implies that for any two arbitrary points, there always exists a direction in the space
such that the two points have equal ℓ2 distance from that direction. If the points are translated
so that this direction aligns with a scalar multiple of a basis vector, then the two points will share
identical values for all entries except one, where the value of one point is the negation of the
corresponding entry of the other point. For simplicity, we refer to such a direction as the axis.

Moreover, we establish a property that must be satisfied by four points on Sd in Rd that form
a parallelogram.

Lemma 4.2. Consider two distinct points x,y ∈ Sd, where Sd ⊂ Rd, and a corresponding axis l
such that the conditions of Lemma 4.1 are satisfied.

For two additional distinct points a,b ∈ Sd, if x − y = b − a, then the following holds:

∥x − projl(x)∥
2
2 = ∥y − projl(y)∥

2
2 = ∥a − projl(a)∥

2
2 = ∥b − projl(b)∥

2
2,

.
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Lemma 4.2 establishes the condition that any four points must satisfy to form an analogy
geometrically. For all pairs of words within a concept, the corresponding word vectors must adhere
to this condition. Geometrically, the region where such points can reside can be described as the
set of points on the surface of Sd that are at a fixed distance r from a given axis l.

We now formalize the above into a mathematical expression for the set of points:

Lemma 4.3. For a concept c ∈ C, given an arbitrary unit vector l whose direction represents the
axis and a radius 0 < r < 1, the embeddings x of the words participating in c satisfy the following
property:

d

∑
i=1

xili =
√
1 − r2,

where xi and li denote the ith entries of the vectors x and l, respectively.

Note that not every set of points x satisfying the equality ∑d
i=1 xili =

√
1 − r2 corresponds to

a valid embedding for a word. Rather, satisfying this equality is a necessary condition: if a word
participates in a concept, its embedding must satisfy the equality. However, the converse does not
necessarily hold; satisfying the equality does not guarantee that the point corresponds to a word
embedding.

Now, consider two concepts c1, c2 ∈ C that have overlapping points. By Lemma 4.3, the regions
where embeddings can reside while participating in each concept can be represented as follows:

d

∑
i=1

x
(1)
i l
(1)
i =

√

1 − (r(1))2,

d

∑
i=1

x
(2)
i l
(2)
i =

√

1 − (r(2))2,

where x(1) and x(2) represent the embeddings for the regions corresponding to concepts c1 and c2,
respectively, and l(1) and l(2) denote the axes of the respective regions. Thus, for embeddings that
participate in both concepts, we need to solve for the set of points x that satisfy both equations.
Determining the regions where overlapping points can reside reduces to solving the system of linear
equations along with the nonlinear constraint that x must lie on Sd, given by ∥x∥2 = 1.

4.1 Dimensionality for Embedding Analogies

With the above constructions, we analyze the relationship between the dimensionality d and the
analogy relationships C for embedding n points on Sd.

Theorem 4.4 (Embeddability of Disjoint Concepts). If ∀i, j ∈ [∣C ∣], i ≠ j, it holds that ∣wci ∩wcj ∣ =

0, then for any n ≥ 4, all n points can be embedded on S2.

Theorem 4.5 (Embeddability of Weak Overlaps). If ∃i, j ∈ [∣C ∣], i ≠ j, such that ∣wci ∩ wcj ∣ = 1,
then for any n ≥ 4, all n points can be embedded on S2.

Note that the statement still holds even if there are more than two overlapping concepts in-
volving the same word, as we can choose an arbitrary number of linear equations that include a
particular point in their region.

Now, we consider the case where there exist concepts with strict overlap.
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Theorem 4.6 (Embeddability of Strong Overlaps). For any n ≥ 4, if k ≤ ∣C ∣ concepts strongly
overlap, then the concepts can be embedded in Sd−1, where d = Ω(k).

Before we consider strong overlaps between k concepts, we first establish a condition that the
axes li need to satisfy for all k analogy conditions to hold in the embeddings.

Lemma 4.7. For an arbitrary set of four words a, b, c, d and concepts c1, c2, if the analogies (a ∶

b) = (c ∶ d) and (a ∶ c) = (b ∶ d) hold and correspond to the concepts c1 and c2, respectively, then the
axes l1 and l2 associated with each concept must be orthogonal.

Lemma 4.7 can be trivially generalized to k concepts with strict overlap, in which case at least
k orthogonal axes are required.

Theorem 4.8 (Embeddability of Strict Overlaps). For any n ≥ 4, if k ≤ ∣C ∣ concepts strictly
overlap, then C can be embedded in Sd−1 for any d = Ω(k).

The contrast between Lemma 4.7 and Theorem 4.8 lies in the orthogonality of the axes. This
distinction has no effect on the system of equations, as the coefficients remain independent.

Note that k strictly overlapping concepts can be embedded in d = k + 1 dimensions, but with
a limitation on the number of words that can participate in the concepts. Specifically, this con-
struction allows at most 2k+1 embeddable words, as the common region determined by k systems
of linear equations, combined with the unit norm constraint, results in two possible values for each
dimension.

5 Conclusion

We have investigated the relationship between concept overlaps and the minimum dimensionality
required to preserve all analogy conditions. By analyzing the interaction between analogy overlaps
and dimensionality, our findings provide insights into the dimensionality requirements for word
embeddings and their capacity to encode linguistic analogies.

It is important to note that our approach focused on identifying the feasible regions where points
can reside to satisfy analogy constraints, rather than precisely determining their exact positions in
space. Once these regions are identified, the arrangement of points can be achieved by sequentially
positioning them while strategically selecting appropriate words to ensure the embedding satisfies
all required conditions.
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2
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where l̂ = l
∥l∥ . Repeating this calculation for y:

∥y − projl(y)∥
2
2 = 1 − (y ⋅ l̂)

2.

Since x ⋅ l̂ = −y ⋅ l̂, the equality ∥x − projl(x)∥2 = ∥y − projl(y)∥2 follows.

Proof of Lemma 4.2. Without loss of generality, let l form a basis and assume that all entries
of x and y are equal except for the d-th entry, where xd = −yd. Define R = ∥x − projl(x)∥

2
2 =

∥y − projl(y)∥
2
2.

Suppose x − y = a − b, and consider b = a + (x − y). Since ∥b∥ = 1, expanding ∥b∥2 gives:

∥a + (x − y)∥2 = ∥a∥2 + 2a ⋅ (x − y) + ∥x − y∥2 = 1.

By construction, the entries of x and y in dimensions 1, . . . , d − 1 are identical. Consequently, the
above simplifies to:

∥a∥2 + 2ad(xd − yd) + (xd − yd)
2
= 1.

Solving for ad, we find:
ad = −xd.

Since ∥x∥ = 1, the squared sum of the first d − 1 entries of x is R. Similarly, for a, we have:

∥a∥2 =
d−1

∑
i=1

a2i + a
2
d = R + (1 −R) = 1.

A similar argument holds for b, completing the proof.

Proof of Lemma 4.3. Let x be a vector with distance r from the axis defined by l. By definition,
this implies:

∥x − projl(x)∥ = r.

From the Pythagorean theorem, we have:

(x ⋅ l)2 + r2 = 1,

leading to:
(x ⋅ l)2 = 1 − r2.

Using the definition of the projection, we expand:

∥x − projl(x)∥
2
= ∥x − (x ⋅ l̂)̂l∥2

= ∥x∥2 − 2(x ⋅ l̂)2 + (x ⋅ l̂)2

= 1 − (x ⋅ l̂)2 = r2.

Thus, (x ⋅ l)2 = 1 − r2, as required.

Proof of Theorem 4.4. Let c ∈ C be an arbitrary concept. We show that if ∣wc∣ > 4, it is
impossible to embed the corresponding words on S1 while preserving all analogies.
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By Lemma 4.2, word embeddings that preserve analogies must satisfy the following two condi-
tions for an axis l and a radius r:

∥vi∥2 = 1,

d(vi, l) = r,

where d(vi, l) denotes the distance from the embedding vi to the axis l.
On the unit circle (S1) in R2, it is geometrically evident that at most four points can lie at

the same distance r from a given axis l. Hence, no more than four embeddings can simultaneously
satisfy the conditions above on S1.

Conversely, for d ≥ 3, the set of points satisfying ∥vi∥2 = 1 and d(vi, l) = r forms a sphere Sd−1

of dimension d − 1, which is uncountably infinite. Therefore, an arbitrary number of embeddings
can satisfy the conditions when d ≥ 3. This completes the proof.

Proof of Theorem 4.5. We aim to determine the minimum d such that the system of two linear
equations:

d

∑
i=1

x
(1)
i l
(1)
i =

√

1 − (r(1))2,

d

∑
i=1

x
(2)
i l
(2)
i =

√

1 − (r(2))2,

has a non-trivial solution while allowing embeddings to assign as many words as possible to each
concept.

When d = 3, we express the embeddings x as follows:

x1l
(1)
1 + x2l

(1)
2 + x3l

(1)
3 =

√

1 − (r(1))2,

x1l
(2)
1 + x2l

(2)
2 + x3l

(2)
3 =

√

1 − (r(2))2,

subject to the constraint:
x2
1 + x

2
2 + x

2
3 = 1.

With three equations and three unknowns (x1, x2, x3), the system admits a finite set of solu-
tions. Thus, for d = 3, it is possible to find embeddings satisfying the conditions of both equations.
This establishes d = 3 as the minimum dimension.

Proof of Theorem 4.6. Suppose there are k overlapping concepts. To encode these concepts
while preserving analogies, the word embeddings must satisfy the following system of k linear
equations:

d

∑
i=1

xil
(1)
i =

√

1 − (r(1))2,

d

∑
i=1

xil
(2)
i =

√

1 − (r(2))2,

⋮

d

∑
i=1

xil
(k)
i =

√

1 − (r(k))2,
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along with the constraint:
d

∑
i=1

x2
i = 1.

These equations impose k + 1 constraints on the embeddings x (the k equations plus the norm
constraint). To have sufficient degrees of freedom for solutions, we require at least k + 2 unknown
variables. Consequently, the dimension d must satisfy:

d ≥ k + 2.

Therefore, a minimum of k + 2 dimensions is necessary to encode k overlapping concepts. This
completes the proof.

Proof of Lemma 4.7. By Lemma 4.1, the vectors l1 and l2 can be chosen such that:

l1 =
a − b

∥a − b∥
, l2 =

a − c

∥a − c∥
.

From the conditions on the concepts, the following relationships hold:

a − b = c − d,

a − c = b − d.

We begin by verifying the equality ∥a − b∥2 = ∥c − d∥2:

∥a − b∥2 = ∥a∥2 + ∥b∥2 − 2a ⋅ b,

∥c − d∥2 = ∥c∥2 + ∥d∥2 − 2c ⋅ d.

Using the fact that ∥a∥ = ∥b∥ = ∥c∥ = ∥d∥ = 1 (since all points lie on Sd), the above simplifies to:

2 − 2a ⋅ b = 2 − 2c ⋅ d.

Hence, we conclude:
a ⋅ b = c ⋅ d.

Next, consider the inner product (a − b) ⋅ (a − c). Expanding this expression, we have:

(a − b) ⋅ (a − c) = ∥a∥2 − a ⋅ b − a ⋅ c + b ⋅ c,

= 1 − a ⋅ b − a ⋅ c + b ⋅ c.

Substituting the conditions on a − b and a − c, we rewrite b − c as d − c and simplify:

(a − b) ⋅ (a − c) = 1 − a ⋅ b − a ⋅ c + c ⋅ (d − c),

= 1 − a ⋅ b − a ⋅ c + c ⋅ d − ∥c∥2,

= 1 − a ⋅ b − a ⋅ c + c ⋅ d − 1,

= c ⋅ d − a ⋅ b.

Since a ⋅ b = c ⋅ d, it follows that:
(a − b) ⋅ (a − c) = 0.

11



Thus, a − b ⊥ a − c, which implies l1 ⊥ l2, as required.

Proof of Theorem 4.8. Generalizing Lemma 4.7, we conclude that k orthogonal axes are neces-
sary to encode k strictly overlapping concepts. Specifically, for each concept, the axes l1, l2, . . . , lk
are mutually orthogonal.

To encode these k concepts, the embedding must satisfy k + 1 equations: k equations corre-
sponding to the orthogonal axes and one equation enforcing the unit norm constraint:

d

∑
i=1

x2
i = 1.

For the system to admit a solution, the dimension d must be sufficient to provide k + 2 degrees
of freedom. Therefore, the minimum dimension required to embed k strictly overlapping concepts
is d ≥ k + 2. This completes the proof.
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