Reconstructing the cascade of language processing in the brain using the internal computations of a transformer-based language model 05 July 2022

Narutatsu (Edward) Ri

Motivation

Goal: Understand the detailed process behind language comprehension in the brain

- Neuroimaging research isolates particular linguistic computations in controlled setting and mapped them onto brain activity (Bookheimer, 2002; etc.)
 - Limited generalizability
 - Difficult to create a holistic model that reflects full complexity of natural language
- Transformers (Vaswani, 2017) show success of capturing sophisticated representations of linguistic structure (Manning et al., 2020; Linzen & Baroni, 2021)

Can we use Transformers to model human brain activity during natural language comprehension?

The Transformer and BERT

Fig. 1: Encoder Architecture of Transformer (The Illustrated Transformer)

Transformer Encoder

- Bidirectional (Decoder is unidirectional)
- Convert input words to static embedding (e.g. one-hot encoding) and add positional encoding
- Apply self-attention (12 individual attention heads for standard model)

• Feed to MLP

BERT

- Stack Encoder part of Transformer (12 layers) followed by an output layer (interchangeable with different layers for specific downstream task)
- Index of elements with high values correspond to certain symbols, which is considered the output

Embeddings and Transformations

Fig. 3: Embeddings vs. Transformations. Transformations are added to embeddings

Embeddings

- "Residual stream" (Elhage, 2021)
 - Model's internal representation of linguistic content
 - Embeddings accumulate previous computations/information over layers
- Majority of previous work focus on attempting to find relationship between embeddings and neural activity

Transformations

- Localized computations
 - The transformation added to the embedding from the previous encoder layer
 - Can be broken down into independent attention heads (12 for standard model)
 - Individual heads shown to have functional specialization where particular heads approximate particular linguistic operations (Clark, 2019)
- Not much preceding work done

(Not directly relevant to the original paper): Why the transformations are considered local representations, when the transformations are still obtained by applying computations on the incoming embeddings?

Work Summary

Primary argument: internal computations implemented by the functionallyspecialized attention heads provide a more direct window onto linguistic processing in the brain than embeddings

- 1. Used encoding models to evaluate how well different language model classes predict fMRI data acquired during natural language comprehension
- 2. Examined performance patterns across different layers
 - 1. Transformations better recapitulate the cortical processing hierarchy across language areas
- 3. Decomposed transformations into individual attention heads
 - 1. Correlation observed between performance on predicting brain activity and predicting syntactic dependencies
 - 2. Find that certain properties of these heads fall along gradients in a low-dimensional cortical space

Fig. 4: Encoding models for predicting brain activity from language models

- Predict brain activity from language models with encoding model
 - Dataset is audio of spoken stories (two story datasets)
 - "slumlord": "Reach for the Stars One Small Step at a Time"
 - 18 subjects (18~27 years), 13 minutes (550 TRs), 2,600 words
 - "black": "I Knew You Were Black"
 - 45 subjects (18~53 years), 13 minutes (534 TRs), 1,500 words
 - BERT model
 - BERT-base-uncased
 - Standard pretrained model, no task-specific finetuning

Fig. 5: Structure of representations for each language model class

- Obtain linguistic state (time x features) at each time step for five different language model classes
 - Classical linguistic features (14 + 25)
 - POS
 - Dependency relations
 - Static embeddings: GloVe (Not specified, 50~300)
 - Contextual embeddings: BERT (768 x 12 layers)
 - Transformations (64 x 12 heads x 12 layers)
 - Transformation magnitudes (1 x 12 heads x 12 layers)
- Embeddings and transformations are concatenated across all layers

(14)

(25)

 Banded ridge regression to learn weights (features x 192 parcels) to map to measured brain activity (time x 192 parcels)

Fig 6: Comparing five classes of language models across cortical language areas

- Embeddings and transformations outperform linguistic features and static embeddings in most language ROIs
- Transformation magnitudes outperform static embeddings and linguistic features in lateral temporal areas but not in higher-level language areas
- Transformations roughly match embeddings across all ROIs

Fig 7: TR-by-TR representational dissimilarity matrices (RDMs) concatenated across all layers

Embeddings and transformation representations are fundamentally different

- Average TR-by-TR correlation between embeddings and transformations for both datasets is effectively zero (-.004 ± .009 SD)
- Embeddings and transformations yield visibly different TR-by-TR representational geometries (Fig. 7)
 - "Visibly different": Not quite convinced...
 - What is the significance of this?

- Transformations have considerably higher temporal autocorrelation than the embeddings (Fig. 8)
 - What is the significance of this?
- Control analysis: Evaluated features in a non-language ROI (early visual cortex) and found that no models captured a significant amount of variance
 - We expect BERT's features to perform better for ROIs responsible for language modeling because we assume BERT's features are more robust than previous classes
 - Thus, showing that performance levels for visual cortex is relatively the same for all classes reinforces the argument that certain ROIs are responsible for language modeling?

language models

Embeddings vs. Transformations: Similarity Across Layers

Fig 10: Similarity between transformations and embeddings across layers

- Embeddings are increasingly contextualized; later layers reflect more complex linguistic relationships (Tenney et al., 2019)
- Transformations are largely independent from layer to layer (Fig. 10)

Embeddings vs. Transformations: Similarity Across Layers

Fig 11: TR-by-TR RDMs within and across each layer of BERT (TR-by-TR RDM x 12 layers)

Fig 12: Second-order layer-by-layer representational geometry of TR-by-TR RDMs

- Transformations produce more layer-specific representational geometries
- Fig. 11: Comparison of representation similarities between layers by TR
 - Faint blue diagonal lines visible for embeddings: Similarity between embeddings of different layers at same time point (also shown in previous slide)
- Fig. 12: Comparison of TR-by-TR RDM similarities between layers
 - Demonstrate that layer-wise representational geometries evolve sequentially across layers
 - Layer 1 and 12 show similarity between RDMs; Layer 1 and 8 show largest difference
 - Could be some pattern, could be by "chance?"

Layer-wise Encoding Performance: Comparison

Fig 13: Layer-wise model performance in ten left-hemisphere language ROIs

Fig 14: Model performance for each layer across all cortical parcels

- Performance of embeddings increased roughly monotonically across layers, peaking in lateintermediate or final layers (Fig. 13)
 - Observed across most ROIs, suggesting that the hierarchy of layer-wise embeddings does not cleanly • map onto the cortical hierarchy for language comprehension
 - Why so? Because we would expect to see similar performances across ROIs if a clean mapping exists?
- Performance of transformations yield more layer-specific fluctuations •
 - Suggesting that computations implemented at particular layers map onto brain in a more specific way than embeddings
- Beyond language areas, similar pattern is observed for cortical parcels
 - What is the significance of this? I thought we established earlier language models do not capture functions of other non-language ROIs well?

Layer-wise Encoding Performance: Comparison

- Visualized which layer yielded the peak performance for a given cortical parcel (Fig. 15)
- Average performance for embeddings peaked significantly later than performance for transformations (Fig. 16)
 - Across language parcels, performance for transformations peaks at intermediate layers, while performance for embeddings peaks in later layers
 - What is the difference in argument between Fig. 16 and Fig. 13?
- Quantified magnitude of difference in predictive performance from layer to layer for all cortical parcels (Fig. 17)
 - Found that transformations have larger differences in performance between neighboring layers
 - How to interpret this figure? What is horizontal axis?
 - Computations implemented by transformations are considerably more layer-specific than embeddings

Fig 18: Head-wise brain prediction scores and dependency prediction scores

- Classical linguistic features are poor predictors of brain activity and did not generally map onto localized brain regions in the context of naturalistic narratives (Fig. 6)
- Identified brain prediction scores for head-wise transformations (Fig. 18 left)
- Identified which attention head predicts classical syntactic dependency (Fig. 18 right)
 - Example: Layer 6, Head 11 best predicts direct object

- Head most associated with a given dependency generally outperformed the dependency itself (Fig. 19)
- Dense, emergent head-wise transformations are better predictors of brain activity than sparse, classical linguistic indicator variables
 - Head-wise transformations are considerably higher-dimensional (64 dimensions) than the corresponding one-dimensional dependency indicators
 - Head-wise transformations have richer expressive capabilities
 - Not exactly sure how these indicators are represented
- After reducing head-wise transformations that best predicts corresponding dependency to a single dimension, one-dimensional transformation still better predicts brain activity than the dependency itself (Fig. 20)
 - Transformations do not simply indicate presence of syntactic dependency, but rather capture an approximation of the direct object relationship in the context of the ongoing narrative

Fig 19: Comparison between encoding performance using head-wise transformation that best predicts syntactic dependency and classical linguistic dependency itself

	-20		20
	F	Percent Noise Ceiling	
Dependency	Di (Transfor	ifference in Performa rmation Scalar vs Dep	nce bendency)
Amod	E.		Ð
Aux	E		Ð
Poss	Ę		Ð
Det	C.		Ð
Prt	R		Ð
nsubj	C.		Ð
pobj			Ð
prep	æ		Ð
advmod	C.		Ð
dobj	Æ		Ð
mark			Ð
ccomp	Æ		Ð

Fig 20: Difference in encoding performance between reduced head-wise transformations and linguistic dependency

A Summarizing headwise transformations across the language network

Fig 21: Illustrated process of mapping to lower-dimensional cortical space

- Summarized contributions of all head-wise transformations across the entire language network
 - Segment weight matrix for each parcel into individual attention heads at each layer and computed L2 norm of head-wise encoding weights (Fig. 21)
 - Weight matrix is shaped 9,216 features (64 features × 12 heads × 12 layers) × 192 language parcels
 - Take L2 norm reduces this matrix to 144 heads (12 heads × 12 layers) × 192 language parcels
 - Summarize head-wise weights using PCA, project weights onto first two PCs (90% variance)

Fig 22: Head-wise transformations in low-dimensional brain space

- Examined structure of "geometry" of head-wise transformations in reduced space
 - Visualized layer numbers of each head and found layer gradient across heads (Fig. 22D)
 - PCs 9, 5, 1 correlated with layer numbers the most (r = 0.45, 0.40, 0.26)
 - Intermediate layers generally in negative quadrant, early and late layers located in positive quadrant
 - Computed average backward attention distance (Fig. 22E)
 - Observed strong gradient of look-back distance increasing along PC2
 - Prefrontal and left anterior temporal parcels correspond to heads with longer look-back distances
 - Functionally specialized heads previously reported in literature (Clark et al., 2019) span PC1 and cluster at negative end of PC2 (Fig. 22F)
 - Corresponding to intermediate layers and relatively recent look-back distance
 - Visualized head-wise dependency prediction scores (Fig. 22G)
 - Observed gradients in different directions
 - Seems like previous literature and current result don't agree with function assignments?

Fig 23: Correspondence between head-wise transformations' brain and dependency predictions

- Quantified correspondence between heads' syntactic information and brain activity prediction performance by computing correlation between brain activity prediction and dependency prediction scores (Fig. 23)
 - i.e. Computed correlation between diagrams in Fig. 18
 - Head-wise correspondence indicate that attention heads containing information about a given dependency also tend to contain information about brain activity for a given ROI, suggesting ROI is involved in computing that dependency
 - Correspondence was high in angular gyrus and MFG across dependencies (Fig. 23B)
 - Observation for MFG is consistent with prior work implicating MFG in both language comprehension and more general cognitive demand (e.g. working memory) (Fedorenko et al., 2011; Mineroff et al., 2018)

- From these results, transformations' brain activity prediction performance doesn't correlate too well with classic syntactic dependencies prediction performance
 - Suggests shared information between transformations and certain ROIs may be semantic in nature or reflect contextual relationships beyond the scope of classical syntax
 - Or perhaps something entirely different? Correlation values seem too low for syntactic information to play a significant role in predicting brain activity?
- Despite the formal distinction between syntax and semantics in linguistics, neural computations supporting human language may not cleanly dissociate syntactic and semantic processing
 - Transformer models implicitly learn syntactic operations to produce good linguistic outputs, such structures are generally entangled with semantic content
 - Transformations capture syntactic operations entangled with semantic content, but perhaps transformation magnitudes can help disentangle syntax and semantics
 - Transformation magnitudes reduce transformations down to "activation" of individual heads and might isolate semantic information
 - How so?
 - Insights from NLP (Clark et al., 2019) suggests transformation magnitudes still contain emergent form of syntactic information
 - Transformation magnitudes outperform static embeddings in temporal areas while underperform in angular gyrus, a putative high-level convergence zone for semantic representation

Fig 24: PC1 and PC2 projected back onto the language parcels

- Project PC1 and PC2 back to parcels to obtain weight magnitudes for respective PCs (Fig. 24)
- Functional properties of head-wise transformations map onto certain cortical localization trends
 - Posterior temporal areas assign higher weights to heads at earlier layers (positive values along PC1) with shorter look-back distance (negative values along PC2)
 - Consistent with previous work suggesting that posterior temporal areas perform early-stage syntactic (and lexico-semantic) processing (Hickok & Poeppel, 2000, 2007; Flick & Pylkkänen, 2020; Murphy et al., 2022)
- IFG not strongly associated with heads specialized for particular syntactic operations despite being well-predicted by both BERT embeddings and transformations (Fig. 23B)
 - Natural language stimuli used may not contain sufficient syntactic complexity to tax IFG
 - Cortical parcellation used may yield imprecise functional localization of IFG (Fedorenko & Blank, 2020)
 - IFG may be more involved in language production than comprehension (Matchin & Hickok, 2020)

Limitations

- Pretrained BERT-base model
 - Not trained in a biologically plausible manner; allows for bi-directional information flow and has access to both past and future tokens
 - Perhaps language models with more biologically-motivated architectures and human-like objectives will provide deeper insights into human language faculty
 - Do such models exist?
- Temporal resolution of fMRI is not high enough to fully capture language processing that occurs on rapid timescales
- Current work sidesteps the acoustic and prosodic features of natural speech
 - Subjects are exposed to audio story-telling data. Cannot quantify amount of noise caused by irrelevant activity to even judge precision of current work?
 - Using movies as stimulus would have similar issue; how important is the quantification of error?

Future Work

- Training "bottlenecked" Transformer models that successively reduce the dimensionality of linguistic representations
 - Produce more hierarchical embeddings
 - Provide better structural mapping onto cortical language circuits
- May benefit from models that extract high-level contextual semantic content directly from speech signal
 - Easier said than done... Other possible methods of information isolation?