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Motivation

Goal: Understand the detailed process behind language comprehension in the 
brain

• Neuroimaging research isolates particular linguistic computations in controlled 
setting and mapped them onto brain activity (Bookheimer, 2002; etc.)
• Limited generalizability

• Difficult to create a holistic model that reflects full complexity of natural language

• Transformers (Vaswani, 2017) show success of capturing sophisticated 
representations of linguistic structure (Manning et al., 2020; Linzen & Baroni, 
2021)

Can we use Transformers to model human brain activity during natural language 
comprehension?
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The Transformer and BERT

Fig. 1: Encoder Architecture of Transformer 
(The Illustrated Transformer)

Fig 2: BERT’s Architecture

Transformer Encoder
• Bidirectional (Decoder is unidirectional)

• Convert input words to static embedding (e.g. 
one-hot encoding) and add positional encoding

• Apply self-attention (12 individual attention 
heads for standard model)

• Feed to MLP

BERT
• Stack Encoder part of Transformer (12 layers) 

followed by an output layer (interchangeable with 
different layers for specific downstream task)

• Index of elements with high values correspond to 
certain symbols, which is considered the output
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Embeddings and Transformations

Embeddings

• “Residual stream” (Elhage, 2021)
• Model's internal representation of linguistic 

content
• Embeddings accumulate previous 

computations/information over layers

• Majority of previous work focus on attempting 
to find relationship between embeddings and 
neural activity

Transformations
• Localized computations

• The transformation added to the embedding from the 
previous encoder layer

• Can be broken down into independent attention heads 
(12 for standard model)

• Individual heads shown to have functional specialization 
where particular heads approximate particular linguistic 
operations (Clark, 2019)

• Not much preceding work done

(Not directly relevant to the original paper): Why the transformations are considered local representations, when 
the transformations are still obtained by applying computations on the incoming embeddings?

Fig. 3: Embeddings vs. Transformations. Transformations are added to embeddings
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Work Summary
Primary argument: internal computations implemented by the functionally-
specialized attention heads provide a more direct window onto linguistic processing 
in the brain than embeddings

1. Used encoding models to evaluate how well different language model classes 
predict fMRI data acquired during natural language comprehension

2. Examined performance patterns across different layers
1. Transformations better recapitulate the cortical processing hierarchy across language areas

3. Decomposed transformations into individual attention heads
1. Correlation observed between performance on predicting brain activity and predicting 

syntactic dependencies

2. Find that certain properties of these heads fall along gradients in a low-dimensional 
cortical space
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Predicting Brain Activity from Language Models

• Predict brain activity from language models with encoding model
• Dataset is audio of spoken stories (two story datasets)

• “slumlord”: “Reach for the Stars One Small Step at a Time”

• 18 subjects (18~27 years), 13 minutes (550 TRs), 2,600 words

• “black”: “I Knew You Were Black”

• 45 subjects (18~53 years), 13 minutes (534 TRs), 1,500 words

• BERT model
• BERT-base-uncased

• Standard pretrained model, no task-specific finetuning
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Predicting Brain Activity from Language Models

• Obtain linguistic state (time x features) at each time step for five different language model classes
• Classical linguistic features (14 + 25)

• POS (14)
• Dependency relations (25)

• Static embeddings: GloVe (Not specified, 50~300)
• Contextual embeddings: BERT (768 x 12 layers)
• Transformations (64 x 12 heads x 12 layers)
• Transformation magnitudes (1 x 12 heads x 12 layers)

• Embeddings and transformations are concatenated across all layers

• Banded ridge regression to learn weights (features x 192 parcels) to map to measured brain 
activity (time x 192 parcels) 
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Predicting Brain Activity from Language Models

• Embeddings and transformations outperform linguistic features and static 
embeddings in most language ROIs

• Transformation magnitudes outperform static embeddings and linguistic features 
in lateral temporal areas but not in higher-level language areas

• Transformations roughly match embeddings across all ROIs

Fig 6: Comparing five classes of language models across cortical language areas
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Embeddings and transformation representations are fundamentally different

• Average TR-by-TR correlation between embeddings and transformations for both 
datasets is effectively zero (-.004 ± .009 SD)

• Embeddings and transformations yield visibly different TR-by-TR representational 
geometries (Fig. 7) 
• “Visibly different”: Not quite convinced...

• What is the significance of this?

Predicting Brain Activity from Language Models

Fig 7: TR-by-TR representational dissimilarity matrices (RDMs) concatenated across all layers
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• Transformations have considerably higher temporal autocorrelation than the embeddings (Fig. 8)
• What is the significance of this?

• Control analysis: Evaluated features in a non-language ROI (early visual cortex) and found that no 
models captured a significant amount of variance
• We expect BERT’s features to perform better for ROIs responsible for language modeling because we 

assume BERT’s features are more robust than previous classes

• Thus, showing that performance levels for visual cortex is relatively the same for all classes reinforces 
the argument that certain ROIs are responsible for language modeling?

Predicting Brain Activity from Language Models

Fig 8: Transformations have higher autocorrelation than embeddings in both stimuli Fig 9: Encoding performance for three classes of 
language models 
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Embeddings vs. Transformations: Similarity Across Layers

• Embeddings are increasingly contextualized; later layers reflect more complex 
linguistic relationships (Tenney et al., 2019)

• Transformations are largely independent from layer to layer (Fig. 10)

Fig 10: Similarity between transformations and embeddings across layers

11



Embeddings vs. Transformations: Similarity Across Layers

• Transformations produce more layer-specific representational geometries

• Fig. 11: Comparison of representation similarities between layers by TR
• Faint blue diagonal lines visible for embeddings: Similarity between embeddings of different layers 

at same time point (also shown in previous slide)

• Fig. 12: Comparison of TR-by-TR RDM similarities between layers
• Demonstrate that layer-wise representational geometries evolve sequentially across layers

• Layer 1 and 12 show similarity between RDMs; Layer 1 and 8 show largest difference
• Could be some pattern, could be by “chance?”

Fig 11: TR-by-TR RDMs within and across each layer of BERT
(TR-by-TR RDM x 12 layers)

Fig 12: Second-order layer-by-layer representational geometry of TR-by-
TR RDMs
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Layer-wise Encoding Performance: Comparison

• Performance of embeddings increased roughly monotonically across layers, peaking in late-
intermediate or final layers (Fig. 13)
• Observed across most ROIs, suggesting that the hierarchy of layer-wise embeddings does not cleanly 

map onto the cortical hierarchy for language comprehension
• Why so? Because we would expect to see similar performances across ROIs if a clean mapping exists?

• Performance of transformations yield more layer-specific fluctuations
• Suggesting that computations implemented at particular layers map onto brain in a more specific way 

than embeddings

• Beyond language areas, similar pattern is observed for cortical parcels
• What is the significance of this? I thought we established earlier language models do not capture functions of other 

non-language ROIs well?

Fig 13: Layer-wise model performance in ten left-hemisphere 
language ROIs

Fig 14: Model performance for each layer across all cortical parcels
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Layer-wise Encoding Performance: Comparison

• Visualized which layer yielded the peak performance for a given cortical parcel (Fig. 15)

• Average performance for embeddings peaked significantly later than performance for 
transformations (Fig. 16)
• Across language parcels, performance for transformations peaks at intermediate layers, while performance for 

embeddings peaks in later layers

• What is the difference in argument between Fig. 16 and Fig. 13?

• Quantified magnitude of difference in predictive performance from layer to layer for all 
cortical parcels (Fig. 17)
• Found that transformations have larger differences in performance between neighboring layers

• How to interpret this figure? What is horizontal axis?

• Computations implemented by transformations are considerably more layer-specific than embeddings

Fig 15: Layer preferences are visualized on 
the cortical surface 

Fig 16: Histogram of preferred layer across 
cortical parcels in language ROIs 

Fig 17: Distribution of magnitude of layer-to-
layer differences in encoding performance
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Interpreting Transformations via Head-wise Analysis 

• Classical linguistic features are poor predictors of brain activity and did not 
generally map onto localized brain regions in the context of naturalistic narratives 
(Fig. 6)

• Identified brain prediction scores for head-wise transformations (Fig. 18 left)

• Identified which attention head predicts classical syntactic dependency (Fig. 18 
right)
• Example: Layer 6, Head 11 best predicts direct object 

Fig 18: Head-wise brain prediction scores and dependency prediction scores
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Interpreting Transformations via Head-wise Analysis 
• Head most associated with a given dependency 

generally outperformed the dependency itself 
(Fig. 19)

• Dense, emergent head-wise transformations are 
better predictors of brain activity than sparse, 
classical linguistic indicator variables

• Head-wise transformations are considerably 
higher-dimensional (64 dimensions) than the 
corresponding one-dimensional dependency 
indicators

• Head-wise transformations have richer expressive 
capabilities 

• Not exactly sure how these indicators are 
represented

• After reducing head-wise transformations that 
best predicts corresponding dependency to a 
single dimension, one-dimensional 
transformation still better predicts brain activity 
than the dependency itself (Fig. 20)

• Transformations do not simply indicate presence of 
syntactic dependency, but rather capture an 
approximation of the direct object relationship in the 
context of the ongoing narrative

Fig 19: Comparison between encoding 
performance using head-wise 

transformation that best predicts syntactic 
dependency and classical linguistic 

dependency itself

Fig 20: Difference in 
encoding performance 

between reduced head-wise 
transformations and 

linguistic dependency
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Interpreting Transformations via Head-wise Analysis 

• Summarized contributions of all head-wise transformations across the entire language 
network

• Segment weight matrix for each parcel into individual attention heads at each layer 
and computed L2 norm of head-wise encoding weights (Fig. 21)
• Weight matrix is shaped 9,216 features (64 features × 12 heads × 12 layers) × 192 language 

parcels

• Take L2 norm reduces this matrix to 144 heads (12 heads × 12 layers) × 192 language parcels

• Summarize head-wise weights using PCA, project weights onto first two PCs (90% variance)

Fig 21: Illustrated process of mapping to lower-dimensional cortical space
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Interpreting Transformations via Head-wise Analysis 

• Examined structure of “geometry” of head-wise transformations in reduced space
• Visualized layer numbers of each head and found layer gradient across heads (Fig. 22D)

• PCs 9, 5, 1 correlated with layer numbers the most (r = 0.45, 0.40, 0.26)

• Intermediate layers generally in negative quadrant, early and late layers located in positive quadrant

• Computed average backward attention distance (Fig. 22E)
• Observed strong gradient of look-back distance increasing along PC2

• Prefrontal and left anterior temporal parcels correspond to heads with longer look-back distances

• Functionally specialized heads previously reported in literature (Clark et al., 2019) span PC1 and cluster at 
negative end of PC2 (Fig. 22F)
• Corresponding to intermediate layers and relatively recent look-back distance

• Visualized head-wise dependency prediction scores (Fig. 22G)
• Observed gradients in different directions
• Seems like previous literature and current result don’t agree with function assignments?

Fig 22: Head-wise transformations in low-dimensional brain space
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Interpreting Transformations via Head-wise Analysis 

• Quantified correspondence between heads’ syntactic information and brain 
activity prediction performance by computing correlation between brain activity 
prediction and dependency prediction scores (Fig. 23)
• i.e. Computed correlation between diagrams in Fig. 18

• Head-wise correspondence indicate that attention heads containing information about a 
given dependency also tend to contain information about brain activity for a given ROI, 
suggesting ROI is involved in computing that dependency

• Correspondence was high in angular gyrus and MFG across dependencies (Fig. 23B)
• Observation for MFG is consistent with prior work implicating MFG in both language 

comprehension and more general cognitive demand (e.g. working memory) (Fedorenko et al., 
2011; Mineroff et al., 2018)

Fig 23: Correspondence between head-wise transformations’ brain and dependency predictions 
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Interpreting Transformations via Head-wise Analysis 
• From these results, transformations’ brain activity prediction performance 

doesn’t correlate too well with classic syntactic dependencies prediction 
performance
• Suggests shared information between transformations and certain ROIs may be semantic in 

nature or reflect contextual relationships beyond the scope of classical syntax
• Or perhaps something entirely different? Correlation values seem too low for syntactic 

information to play a significant role in predicting brain activity?

• Despite the formal distinction between syntax and semantics in linguistics, neural 
computations supporting human language may not cleanly dissociate syntactic 
and semantic processing 
• Transformer models implicitly learn syntactic operations to produce good linguistic outputs, 

such structures are generally entangled with semantic content
• Transformations capture syntactic operations entangled with semantic content, but perhaps

transformation magnitudes can help disentangle syntax and semantics
• Transformation magnitudes reduce transformations down to “activation” of individual heads and 

might isolate semantic information
• How so?

• Insights from NLP (Clark et al., 2019) suggests transformation magnitudes still contain emergent 
form of syntactic information

• Transformation magnitudes outperform static embeddings in temporal areas while underperform 
in angular gyrus, a putative high-level convergence zone for semantic representation
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Interpreting Transformations via Head-wise Analysis 

• Project PC1 and PC2 back to parcels to obtain weight magnitudes for respective PCs (Fig. 24)

• Functional properties of head-wise transformations map onto certain cortical localization trends
• Posterior temporal areas assign higher weights to heads at earlier layers (positive values along PC1) 

with shorter look-back distance (negative values along PC2)

• Consistent with previous work suggesting that posterior temporal areas perform early-stage syntactic 
(and lexico-semantic) processing (Hickok & Poeppel, 2000, 2007; Flick & Pylkkänen, 2020; Murphy et al., 
2022)

• IFG not strongly associated with heads specialized for particular syntactic operations despite 
being well-predicted by both BERT embeddings and transformations (Fig. 23B)
• Natural language stimuli used may not contain sufficient syntactic complexity to tax IFG

• Cortical parcellation used may yield imprecise functional localization of IFG (Fedorenko & Blank, 2020)

• IFG may be more involved in language production than comprehension (Matchin & Hickok, 2020)

Fig 24: PC1 and PC2 projected back onto the language parcels 
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Limitations
• Pretrained BERT-base model

• Not trained in a biologically plausible manner; allows for bi-directional information flow and 
has access to both past and future tokens

• Perhaps language models with more biologically-motivated architectures and human-like 
objectives will provide deeper insights into human language faculty

• Do such models exist?

• Temporal resolution of fMRI is not high enough to fully capture language 
processing that occurs on rapid timescales

• Current work sidesteps the acoustic and prosodic features of natural speech
• Subjects are exposed to audio story-telling data. Cannot quantify amount of noise caused by 

irrelevant activity to even judge precision of current work? 

• Using movies as stimulus would have similar issue; how important is the quantification of 
error?
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Future Work
• Training “bottlenecked” Transformer models that successively reduce the 

dimensionality of linguistic representations 
• Produce more hierarchical embeddings 

• Provide better structural mapping onto cortical language circuits

• May benefit from models that extract high-level contextual semantic content 
directly from speech signal
• Easier said than done... Other possible methods of information isolation?
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